Troubleshooter_in_action
Plastic Troubleshooter
On-Line Solutions To Injection Molding Problems
MACHINE

Molded-In Stresses

Explanation: Although stress cannot be eliminated, excessive stress can be molded into the parts by using too high an injection pressure, too high a holding pressure, or too fast a filling rate. The molten material is forced into the mold and held there under great pressure until it partially solidifies. When the mold opens and the part is ejected, it is still cooling but is no longer constrained by the mold. Some of the molded-in stresses are allowed to release and a ``splitting'' of the plastic occurs, usually in the weakest area.

Solution: Reduce packing and fill rates by adjusting until the part is properly filled with minimum stresses. Maintain a holding pressure that is no more than 1/2 the primary injection pressure.

MOLD

Undercuts Or Parting Line Burrs

Explanation: For the molded part to eject there must be no restrictions to a straight push out of the cavity. An undercut, reverse draft, or burr will cause such a restriction. This will try to keep the part in the mold while the ejection system tries to push it out of the mold. The conflict that arises will cause the part to fracture or crack.

Solution: Inspect the sidewalls and edges of the cavity. Make sure there is adequate draft (see the next paragraph) and that there are no burrs or other undercut conditions. If there are they must be removed by stoning or machining.

Use Of Mold Release

Explanation: Mold release will interfere with the molecular bonding of the plastic. Material enters a cavity in layers and these layers must be allowed to bond together. Mold release interferes with that bonding and will cause crazing to occur on the surface of the part.

Solution: The remedy is to keep the mold as clean as possible and make every effort to eliminate the use of external mold releases.

MATERIAL

Degraded Material

Explanation: One common cause of cracking is the use of material that has become degraded. This can be the result of overheating in the barrel, but a more common cause is the use of bad regrind. Regrind that has been used over and over can easily become degraded to the continued exposures to elevated temperature. It melts at lower temperatures than virgin so the regrind can degrade in the barrel, which must be heated high enough to melt the virgin thereby degrading the regrind. Degraded material is weak and does not have a good molecular bonding of molecules. This results in cracking when the part is exposed to any stress, such as that of the ejection system.

Solution: Use only high grade regrind and use it only once. Mix regrind with virgin at a level of approximately 15% regrind by weight to minimize the tendency to degrade. If this is still a problem, eliminate the use of regrind altogether.

OPERATOR

Poor Housekeeping

Explanation: Machine operators who have been told to use mold release sprays sparingly, will eventually overuse the spray. The thought seems to be that if a little bit works, a lot will work better. Excessive mold release will interfere with molecular bonding of the plastic and cause weak areas that break apart easily.

Solution: If possible, run the machine on automatic cycle, using the operator only to interrupt the cycle if an emergency occurs. Use a robot if an ``operator'' is really necessary. And, instruct all employees on the importance of maintaining consistent cycles.

CRACKING AND/OR CRAZING


 

Cracking and/or Crazing can be defined as a fracture or surface breakage in the material of  a molded part, usually found in weld line areas, but also on the surface in general.

 

Some common causes and solutions are listed below.

Defect - Cracking
Defect - Crazing
Copyright by IPLAS and Douglas M. Bryce
Worldwide Rights Reserved

NOTE: For more detailed information on the causes and solutions of this defect, you can find it in our BOOK, or ONLINE SEMINAR.